103 research outputs found

    Asymmetric evolutionary games

    Full text link
    Evolutionary game theory is a powerful framework for studying evolution in populations of interacting individuals. A common assumption in evolutionary game theory is that interactions are symmetric, which means that the players are distinguished by only their strategies. In nature, however, the microscopic interactions between players are nearly always asymmetric due to environmental effects, differing baseline characteristics, and other possible sources of heterogeneity. To model these phenomena, we introduce into evolutionary game theory two broad classes of asymmetric interactions: ecological and genotypic. Ecological asymmetry results from variation in the environments of the players, while genotypic asymmetry is a consequence of the players having differing baseline genotypes. We develop a theory of these forms of asymmetry for games in structured populations and use the classical social dilemmas, the Prisoner's Dilemma and the Snowdrift Game, for illustrations. Interestingly, asymmetric games reveal essential differences between models of genetic evolution based on reproduction and models of cultural evolution based on imitation that are not apparent in symmetric games.Comment: accepted for publication in PLOS Comp. Bio

    Eco-evolutionary dynamics of social dilemmas

    Full text link
    Social dilemmas are an integral part of social interactions. Cooperative actions, ranging from secreting extra-cellular products in microbial populations to donating blood in humans, are costly to the actor and hence create an incentive to shirk and avoid the costs. Nevertheless, cooperation is ubiquitous in nature. Both costs and benefits often depend non-linearly on the number and types of individuals involved -- as captured by idioms such as `too many cooks spoil the broth' where additional contributions are discounted, or `two heads are better than one' where cooperators synergistically enhance the group benefit. Interaction group sizes may depend on the size of the population and hence on ecological processes. This results in feedback mechanisms between ecological and evolutionary processes, which jointly affect and determine the evolutionary trajectory. Only recently combined eco-evolutionary processes became experimentally tractable in microbial social dilemmas. Here we analyse the evolutionary dynamics of non-linear social dilemmas in settings where the population fluctuates in size and the environment changes over time. In particular, cooperation is often supported and maintained at high densities through ecological fluctuations. Moreover, we find that the combination of the two processes routinely reveals highly complex dynamics, which suggests common occurrence in nature.Comment: 26 pages, 11 figure
    • …
    corecore